

Positive Thermal Coefficient (PTC)

RL600 Series

Description

Positive Thermal Coefficient devices(PTC), provide over-current protection for electrical and electronic devices. They function using conducting strips of metal imbedded inside polymers. Under normal conditions, the devices resistance is near zero, but over-current conditions will heat the PTC and expand the polymer, increasing the impedance. When current returns to normal, the components cool down, returning to their original shape and very low levels of resistance.

Applications

- I Over-current and over-temperature protection of automotive electronics
- I Hard disk drives
- I Point-of-sale (POS) equipment
- I PCMCIA cards
- I Power over Ethernet (POE)
- I HDMI 1.4 Source protection
- I Computers & peripherals
- I Industrial control
- I Security systems

- Features
- I I(hold): 0.11~0.16A
- I 600V Operating voltages
- I Radial leaded devices.
- I Over-current protection
- I Very high voltage surge capabilities.
- I Available in lead-free version.
- I Fast time-to-trip
- I RoHS compliant, Lead- Free and Halogen-Free

Part Number Code

Environmental Specifications

Test	Conditions	Resistance change		
Passive aging	+85℃,1000hrs	\pm 8% typical		
Humidity aging	+85℃,85%R.H.1000hrs	\pm 8% typical		
Thermal shock	+125℃ to -55℃,10times	\pm 12% typical		
Resistance to solvent	MIL-STD-202, Method 215	No change		
Vibration	MIL-STD-202, Method 201	No change		

361°Circuit Protection System

Specifications are subject to change without notice. Please refer to http://www.ruilon.com.cn for current information.

Positive Thermal Coefficient (PTC)

RL600 Series

Electrical Characteristic

Madal	odel I _{hold} I _T V _{ma} (A) (A) (V	г	V _{max}	Maximum T	ime to Trip	I _{max}	Pd _{typ}	Resistance(Ω)	
Woder		(V)	Current(A)	Time(S)	(A)	(W)	Ri _{min}	R1 _{max}	
RL600-110	0.11	0.22	600	1	8	3	1.5	6.0	30.0
RL600-150	0.15	0.30	600	1	9	3	1.5	5.0	22.0
RL600-160	0.16	0.32	600	1	10	3	1.5	4.0	18.0

 $I_{\text{H}}\text{=}\text{Hold}$ current: maximum current at which the device will not trip at 25 $^\circ\!\mathrm{C}$ still air.

 $I_{T}\text{=}\text{Trip}$ current: minimum current at which the device will nalways at 25 $^\circ\!\!\!\!^\circ$ still air.

V max=Maximum voltage device can withstand without damage at rated current.

I_{max}=Maximum fault current device can withstand tithout damage at rated voltage.

T trip=Maximum time to trip(s) at assigned current.

P_d=Typical power dissipation: typical amount of power dissipated by the decice when in state air environment.

Ri $_{min}\text{=}Minimum$ device resistance at 25 $^\circ\!\!\mathrm{C}$ $\,$ prior to tripping.

R1 max=Maximum device resistance is measured one hour post reflow.

Solder reflow conditions

Environmental temperature and I_H,I_T

361°Circuit Protection System

Specifications are subject to change without notice. Please refer to http://www.ruilon.com.cn for current information.

RL600 Series

Product Dimensions

Fig:1

Dimensions (mm)					Dimensions (in)					Shape	
Type Number	A(max)	B(max)	C(typ)	D(max)	LeadΦ (typ)	A(max)	B(max)	C(typ)	D(max)	LeadΦ (typ)	Fig
RL600-110	14.0	14.0	5.1	6.0	0.6	0.551	0.551	0.201	0.236	0.024	1
RL600-150	14.5	14.5	5.1	6.5	0.8	0.571	0.571	0.201	0.256	0.031	1
RL600-160	14.5	14.5	5.1	6.5	0.8	0.571	0.571	0.201	0.256	0.031	1

Packaging

Part Number	Quantity
RL600-110~RL600-160	500pcs/bag

